
by Dan Cruikshank

Autor

Dan Cruikshank has been an IT
professional since 1972 and an IBM
employee since 1998. He has served
in several capacities in both
operations and programming, many
application migrations from various
platforms to the IBM System i
family. Since 1993, he has been
focused primarily on resolving
i5/iSeries (AS/400) application and
system performance issues at
several IBM customer accounts. In
1999, he also took on the role of
instructor for the IBM DB2 UDB for
iSeries SQL Optimization Worksho

At ACME Enterprises, operations or applications personnel
have always performed most of the activities associated with
the database. As systems have become larger and new
technologies have emerged (e.g., the Internet and the Web),
the advanced capabilities of the database have gone virtually
unnoticed by the current staff. The operations and
applications personnel have always focused on new
techniques and methods (e.g., LPAR, networking, SOA, Java,
WebSphere) that are directly related to their own primary
function. As a result, the database functions became less
important — until a program broke because a limit was
exceeded (e.g., the number of members in a file) or an ad hoc
query consumed all available resources.

Recognizing a growing need for better database management,
ACME recently promoted its most senior programmer analyst
to the position of database architect (DBA). The new DBA was
tasked with the following objectives:

Improve the performance of the legacy applications.
Improve the performance of newer programs containing embedded SQL.

Having established a plan and methodology for capturing Performance Explorer (PEX) data, the DBA
was ready to tackle the growing SQL workload. As the DBA began brushing up on database
optimization for DB2 UDB for System i, he learned that there are two database optimizers (Figure
1), and that IBM will provide all future enhancements to the SQL Query Engine (SQE) and little or
no enhancements to the Classic Query Engine (CQE). He was also startled to learn that specifying a
DDS-defined logical file object on the FROM clause of an SQL statement forces CQE optimization. In
addition, if a derived index (e.g., select/omit logical files) exists over any physical file object accessed
during SQE optimization, the optimization will be rerouted to the CQE optimizer

Künstler Burgy Zapp

http://burgyzapp.de


This is a major concern, as ACME (like most long-term System i customers) has a substantial
portfolio in older technology (i.e., Query/400 and Open Query File (OPNQRYF) command use). This
investment in proprietary non-SQL interfaces and DDS-defined databases prevented ACME from
reaping the benefits of new, enhanced data access methods introduced with SQE.

To demonstrate this to upper management, the DBA identified an SQL INSERT with a subselect
consisting of a multitable join that was running for several minutes to several hours. Due to existing
DDS restrictions, the SQL statement was optimized by CQE. By providing an override via the i5
(System i) INI function (explained later), the DBA was able to force the SQL statement to be
optimized by SQE, which resulted in a plan that took 20 seconds to execute.

Database Optimization Basics

To take advantage of the new SQE optimizer, you should have a basic understanding of how a query
is optimized. The optimization phase of SQL or query processing follows this simplified process:

Establish the optimization goal.1.
Dispatch the query to one of the optimization engines.2.
Cost-compare the plans.3.
Generate the best plan based on cost.4.

The optimization goal.

From optimizing HLL programs, the DBA at ACME learned that certain data access methods
performed better than others based on the environment in which they’re used (i.e., interactive
versus batch). It was up to the development staff to determine the data access method before
implementing a program. For example, an RPG developer at ACME now chooses the READ operation
over the READE operation when developing a program destined for a batch environment.

The DB2 UDB for i5 optimizer also determines an optimization goal before cost-comparing the plan
for a query. These optimization goals are referred to as First I/O or All I/O. First I/O biases the
optimizer to create a plan that will return the first set of rows as quickly as possible. All I/O biases
the optimizer to create a plan that will return the entire result as quickly as possible.

The fastest way to return the first set of rows is via indexes. The fastest way to return the entire
result set may require the use of parallelism and/or temporary intermediate results.

The environment determines the initial optimization goal setting for the optimizer. Generally, all
dynamic SQL interfaces (ODBC, JDBC, or interactive SQL) default to First I/O. The default can be
changed implicitly to All I/O by using one of the following techniques:

package support (extended dynamic)
RUNSQLSTM
INSERT + subSELECT
CLI
static embedded SQL in HLL programs

You can override the optimization goal explicitly through the use of the HLL precompiler options,
the QAQQINI file, or the OPTIMIZE FOR n ROWS clause on an SQL statement.

The query dispatcher. As of V5R2, DB2 UDB for i5 comes with two optimizers (Figure 1). The query
task dispatcher is responsible for determining the appropriate optimizer based on the type of query
being processed. In essence, SQL queries are dispatched to SQE, and non-SQL queries (OPNQRYF,



Query/400) are dispatched to CQE. Portions of the new SQE optimizer are no longer a part of
OS/400 or i5/OS. The code is shipped as part of the System Licensed Internal Code (SLIC).
As of V5R4, the following types of queries are dispatched to CQE:

SQL statements that contain
DDS logical file references
User-Defined Table Functions (UDTFs)
LOWER or UPPER scalar function
Sort sequences and CCSID translation between columns
Non-SQL queries (QQQQry API, Query/400, OPNQRYF)

All other SQL statements are optimized by the SQE optimizer. In addition, only SQE optimizes new
functions such as INTERSECT and EXCEPT. Should the SQE optimizer encounter a derived index
(e.g., a DDS logical file with the SELECT/OMIT keyword specified), the dispatcher will reroute the
SQL statement to the CQE optimizer.

Cost-comparing the query.

Like all cost-based RDBMS optimizers, the DB2 UDB for i5 optimizer relies on statistics to estimate
the cost of the possible plans that can be used to implement a query. Unlike some other RDBMS
optimizers, the i5 optimizer gathers statistics dynamically from the environment and existing
database objects. This includes the tables and their associated indexes (or keyed DDS logical files).

The optimizer’s first step is to establish a default cost based on the assumed selection determined by
the predicates used within the query. Each predicate has a default filter factor. For example, the
optimizer assumes 10 percent of the rows in the table will be accessed when an equal predicate is
used.

This content is available for purchase. Please select from available options.

7 Euro/Monat NEWSabo digital - sofort zugreifen.
13,5 Euro/Monat NEWSabo plus inklusive 5x Login & Print-Ausgabe - sofort zugreifen.

Login & Purchase

http://newsolutions.de/it/abo/register/
http://newsolutions.de/it/abo/get-newsabo-plus/
http://newsolutions.de/it/wp-login.php?action=login&redirect_to=http://newsolutions.de/it/exploiting-the-sql-query-engine/

	[Database Optimization Basics]
	[Database Optimization Basics]
	Database Optimization Basics
	The optimization goal.
	Cost-comparing the query.



